
P a g e | 1

FCPIT VDS Saini

5. Operators and expressions

5.1 Operators in C++

An operator is a symbol that tells the compiler to perform specific mathematical
or logical manipulations. C++ is rich in built-in operators and provides the
following types of operators:

 Arithmetic Operators
 Relational Operators
 Logical Operators
 Bitwise Operators
 Assignment Operators
 Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment
and other operators one by one.

1. Arithmetic Operators:

There are following arithmetic operators supported by C++ language:
Assume variable A holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an
integer division

B % A will give 0

++ Increment operator, increases integer value by
one

A++ will give 11

-- Decrement operator, decreases integer value by
one

A-- will give 9

2. Relational Operators:

There are following relational operators supported by C++ language
Assume variable A holds 10 and variable B holds 20, then:
Show Examples

Operator Description Example

== Checks if the values of two operands are equal or
not, if yes then condition becomes true.

(A == B) is not true.

P a g e | 2

FCPIT VDS Saini

!= Checks if the values of two operands are equal or
not, if values are not equal then condition
becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the
value of right operand, if yes then condition
becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

(A <= B) is true.

3. Logical Operators:

There are following logical operators supported by C++ language
Assume variable A holds 1 and variable B holds 0, then:

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the operands
are non-zero, then condition becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the two
operands is non-zero, then condition becomes
true.

(A || B) is true.

! Called Logical NOT Operator. Use to reverses the
logical state of its operand. If a condition is true,
then Logical NOT operator will make false.

!(A && B) is true.

4. Bitwise Operators:

Bitwise operator works on bits and perform bit-by-bit operation. The truth
tables for &, |, and ^ are as follows:

P q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

P a g e | 3

FCPIT VDS Saini

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100
B = 0000 1101

A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011

The Bitwise operators supported by C++ language are listed in the following
table. Assume variable A holds 60 and variable B holds 13, then:

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to
the result if it exists in both
operands.

(A & B) will give 12 which is 0000
1100

| Binary OR Operator copies a bit if it
exists in either operand.

(A | B) will give 61 which is 0011
1101

^ Binary XOR Operator copies the bit
if it is set in one operand but not
both.

(A ^ B) will give 49 which is 0011
0001

~ Binary Ones Complement Operator
is unary and has the effect of
'flipping' bits.

(~A) will give -61 which is 1100
0011 in 2's complement form due
to a signed binary number.

<< Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right
operand.

A << 2 will give 240 which is 1111
0000

>> Binary Right Shift Operator. The left
operands value is moved right by
the number of bits specified by the
right operand.

A >> 2 will give 15 which is 0000
1111

5. Assignment Operators:

There are following assignment operators supported by C++ language:

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from
right side operands to left side operand

C = A + B will assign
value of A + B into C

P a g e | 4

FCPIT VDS Saini

+= Add AND assignment operator, It adds right
operand to the left operand and assign the result
to left operand

C += A is equivalent
to C = C + A

-= Subtract AND assignment operator, It subtracts
right operand from the left operand and assign the
result to left operand

C -= A is equivalent
to C = C - A

*= Multiply AND assignment operator, It multiplies
right operand with the left operand and assign the
result to left operand

C *= A is equivalent
to C = C * A

/= Divide AND assignment operator, It divides left
operand with the right operand and assign the
result to left operand

C /= A is equivalent
to C = C / A

%= Modulus AND assignment operator, It takes
modulus using two operands and assign the result
to left operand

C %= A is equivalent
to C = C % A

<<= Left shift AND assignment operator C <<= 2 is same as
C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as
C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as C
= C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is same as C
= C ^ 2

|= bitwise inclusive OR and assignment operator C |= 2 is same as C
= C | 2

6. Misc Operators

There are few other operators supported by C++ Language.

Operator Description

sizeof sizeof operator returns the size of a variable. For
example, sizeof(a), where a is integer, will return 4.

Condition ? X : Y Conditional operator. If Condition is true ? then it returns
value X : otherwise value Y

, Comma operator causes a sequence of operations to be
performed. The value of the entire comma expression is the
value of the last expression of the comma-separated list.

. (dot) and -> (arrow) Member operators are used to reference individual
members of classes, structures, and unions.

Cast Casting operators convert one data type to another. For
example, int(2.2000) would return 2.

P a g e | 5

FCPIT VDS Saini

& Pointer operator & returns the address of an variable. For
example &a; will give actual address of the variable.

* Pointer operator * is pointer to a variable. For example
*var; will pointer to a variable var.

5.2 Operators Precedence and Associatively in C++:

Operator precedence determines the grouping of terms in an expression. This
affects how an expression is evaluated. Certain operators have higher
precedence than others; for example, the multiplication operator has higher
precedence than the addition operator:

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator *
has higher precedence than +, so it first gets multiplied with 3*2 and then adds
into 7.

Here, operators with the highest precedence appear at the top of the table,
those with the lowest appear at the bottom. Within an expression, higher
precedence operators will be evaluated first.

Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

P a g e | 6

FCPIT VDS Saini

5.3 Expressions and their evaluation

An expression is "a sequence of operators and operands that specifies a computation"
(that's the definition given in the C++ standard). Examples are 42, 2 + 2, "hello, world",
and func("argument"). Assignments are expressions in C++; so are function calls.

I don't see a definition for the term "statement", but basically it's a chunk of code that
performs some action. Examples are compound statements (consisting of zero or more
other statements included in { ... }), if statements, goto statements, return statements,
and expression statements. (In C++, but not in C, declarations are classified as
statements.)

The terms statement and expression are defined very precisely by the language
grammar.

An expression statement is a particular kind of statement. It consists of an optional
expression followed by a semicolon. The expression is evaluated and any result is
discarded. Usually this is used when the statement has side effects (otherwise there's
not much point), but you can have a expression statement where the expression has no
side effects. Examples are:

x = 42; // the expression happens to be an assignment

func("argument");

42; // no side effects, allowed but not useful

; // a null statement

The null statement is a special case. (I'm not sure why it's treated that way; in my
opinion it would make more sense for it to be a disinct kind of statement. But that's
the way the standard defines it.)
Note that
return 42;

is a statement, but it's not an expression statement. It contains an expression, but
the expression (plus the ;) doesn't make up the entire statement.

"Expression in C++ is form when we combine operands (variables and constant) and C++
OPERATORS."

Expression can also be defined as:

"Expression in C++ is a combination of Operands and Operators."
OPERANDS IN C++ PROGRAM are those values on which we want to perform perform
operation.
There are three types of expressions:

1. Arithmetic expression
2. Relational expression
3. Logical expression

P a g e | 7

FCPIT VDS Saini

5.4 Type Conversions.

What is type conversion
It is the process of converting one type into another. In other words converting an expression of a
given type into another is called type casting.

How to achieve this
There are two ways of achieving the type conversion namely:

 Automatic Conversion otherwise called as Implicit Conversion
 Type casting otherwise called as Explicit Conversion

Let us see each of these in detail:

Automatic Conversion otherwise called as Implicit Conversion
This is not done by any conversions or operators. In other words the value gets automatically
converted to the specific type to which it is assigned.

Let us see this with an example:

1. #include <iostream.h>
2.
3. void main()
4. {
5. short x=6000;
6. int y;
7. y=x;
8. }

In the above example the data type short namely variable x is converted to int and is assigned to the
integer variable y.

So as above it is possible to convert short to int, int to float and so on.

Type casting otherwise called as Explicit Conversion
Explicit conversion can be done using type cast operator and the general syntax for doing this is :

datatype (expression);

Here in the above datatype is the type which the programmer wants the expression to gets changed
as.

In C++ the type casting can be done in either of the two ways mentioned below namely:

 C-style casting
 C++-style casting

The C-style casting takes the synatx as

(type) expression

P a g e | 8

FCPIT VDS Saini

This can also be used in C++.

Apart from the above, the other form of type casting that can be used specifically in C++
programming language namely C++-style casting is as below namely:

type (expression)

This approach was adopted since it provided more clarity to the C++ programmer :

type (firstVariable) * secondVariable

Let us see the concept of type casting in C++ with a small example:

1. #include <iostream.h>
2.
3. void main()
4. {
5. int a;
6. float b,c;
7. cout << "Enter the value of a:";
8. cin >> a;
9. cout << "Enter the value of b:";
10. cin >> b;
11. c = float(a)+b;
12. cout << "The value of c is:" << c;
13. }

The output of the above program is

In the above program a is declared as integer and b and c are declared as float. In the type
conversion statement namely

1. c = float(a)+b;

The variable a of type integer is converted into float type and so the value 10 is converted as 10.0
and then is added with the float variable b with value 12.5 giving a resultant float variable c with
value as 22.5

